2x^2-x-6=(2x-3)(2x-3)

Simple and best practice solution for 2x^2-x-6=(2x-3)(2x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-x-6=(2x-3)(2x-3) equation:



2x^2-x-6=(2x-3)(2x-3)
We move all terms to the left:
2x^2-x-6-((2x-3)(2x-3))=0
We add all the numbers together, and all the variables
2x^2-1x-((2x-3)(2x-3))-6=0
We multiply parentheses ..
2x^2-((+4x^2-6x-6x+9))-1x-6=0
We calculate terms in parentheses: -((+4x^2-6x-6x+9)), so:
(+4x^2-6x-6x+9)
We get rid of parentheses
4x^2-6x-6x+9
We add all the numbers together, and all the variables
4x^2-12x+9
Back to the equation:
-(4x^2-12x+9)
We add all the numbers together, and all the variables
2x^2-1x-(4x^2-12x+9)-6=0
We get rid of parentheses
2x^2-4x^2-1x+12x-9-6=0
We add all the numbers together, and all the variables
-2x^2+11x-15=0
a = -2; b = 11; c = -15;
Δ = b2-4ac
Δ = 112-4·(-2)·(-15)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*-2}=\frac{-12}{-4} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*-2}=\frac{-10}{-4} =2+1/2 $

See similar equations:

| 11y+6=115 | | 11y+6=135 | | x^2+16x=11 | | 2c+25=c+43 | | 2b+34=4b | | x^2+16=11 | | 4^(x-2)=256 | | 3s=s+34 | | 2t+8=t+28 | | 12x+1=17x-39 | | 2y+17=y+25 | | 10y+4=13y-8 | | 216^3x=36^2x-1 | | 20z-12=18z | | x+43=9x-45 | | 2y-21=y-1 | | 3x-7+5x+9=2x+14-x-10 | | 99-8x=67 | | w+47=w+39 | | 288=15+7d/13 | | 3x-6=-x+18 | | 3x=x+374 | | 4(n-3)+2=5 | | 7x-47=x+13 | | y+48=14y-17 | | 12t+4=15t-8 | | u=3u-36 | | 8z=z+21 | | 14y=4y+50 | | 2z-10=z+4 | | 6y-4=y+41 | | 2b=3b-14 |

Equations solver categories